

Valmet SDO, Automated Optimization of Centrifuge Dewatering Process Fountain Valley, CA

Tony Guerra – Regional Manager, West Coast/Mexico <u>Tony.guerra@valmet.com</u>

Shirley Johnson – Regional Manager, Midwest/South Shirley.Johnson@valmet.com

July 18, 2019

Valmet in brief

MEMBER OF Dow Jones Sustainability Indices In Collaboration with RobecoSAM ()

- We are the leading global developer and supplier of technologies, automation and services for the pulp, paper, energy and process industries.
 Valmet's vision is to become the global champion in serving its customers.
- We have over 13,000 professionals around the world working close to our customers.
- Net sales in 2018 were approximately EUR 3.3 billion. Valmet's objective is to become the global champion in serving its customers.

Strong, global presence is a good platform for growth

Over 100 service centers, 85 sales offices, 35 production units, 16 R&D centers

Wastewater Partners globally

In Southern Cal Valmet partners with CP Crowley Company

In USA, all engineering, inventory and support based in Atlanta GA with over 30 service technicians spread around the country.

Valmet offering for wastewater management

Advanced measurement technology and controls for municipal & industrial wastewater dry solids management

- Valmet Total Solids Transmitter (Valmet TS)
- Valmet Low Solids Measurement (Valmet LS)
- Valmet Dry Solids Measurements (Valmet DS)
- Valmet Nove, Nove H samplers
- Valmet SDO, Sludge Dewatering Optimizer
- Valmet DNA automation system

Challenge the way to optimize

- The current way to provide data to operators is typically based on grab samples which only provide a "snapshot" of what the process is doing at a specific point in time.
- Old generation sensors like optical devices tend to have minimal usefulness due to high maintenance needs, difficult calibrations and low of measurement volume, loosing operator confidence.
- First time is complete automation system is available with all measurements and controls proven in the field.

Valmet Sludge Dewatering Optimizer (Valmet SDO) and associated measurements

Valmet Solids Measurement Technology

- Proven Technology
- All centrifuge solids measurements covered
- 40 years experience of industrial solids measurements
- Reliable real-time results

Valmet Sludge Dewatering Optimizer

- Multivariable Controls
- Reliable hardware
- Application developed with customer involvement
- 24/7 Optimization

Valmet's combination of Multivariable Control together with accurate and reliable real-time measurements is unique to the wastewater industry

Valmet Sludge Dewatering Optimizer (Valmet SDO) and associated measurements

Valmet TS

Microwave Total Solids Transmitter

- Measuring Total solids 0...40 %TS
- Real-time measurement
- Wide Application Range
- Flow Through Design
- Minimal Maintenance
 - No Moving Parts
 - Single Point Calibration
- ATEX certification
- Glass Lined Version Available
- High Pressure PN100 available
- Communication 4-20mA, HART, Profibus PA

Valmet LS

Low Solids Measurement

- Measuring Total solids 0 0.5%
- Designed for centrate real-time measurement
- 2 LED Light Sources
- De-Aeration, Screening included
- Automated flushing and chemical cleaning included
- Diagnostic and verification with clean water
- Communication 4-20mA, HART

Valmet DS

Dry Solids Measurement

- Measuring Total solids 15% TS and above
- Designed for Waste Water Treatment plants
- Real-time measurement
- Falling Cake Flow
- Communication 4-20mA

Centrate TSS Dry Cake TS interactions

Difficult to control with separate loops but easy with Valmet SDO MPC technology

Manipulated variables

First step

Input Values

- Valmet TS before the centrifuge
- Flow measurement before the centrifuge

- Polymer setpoint
- Sludge feed flow setpoint

Second step with option #1

Input Values

- Valmet TS before the centrifuge
- Flow measurement before the centrifuge
- Valmet LS Measuring Centrate Solids %

- Polymer setpoint
- Sludge feed flow setpoint

Second step with option #2

Input Values

- Valmet TS before the centrifuge
- Flow measurement before the centrifuge
- Valmet TS or DS Measuring Dry Cake Solids %

- Polymer setpoint
- Sludge feed flow setpoint
- Centrifuge torque setpoint

Third step

Input Values

- Valmet TS before the centrifuge
- Flow measurement before the centrifuge
- Valmet LS Measuring Centrate Solids %
- Valmet TS or DS Measuring Dry Cake Solids %

- Polymer setpoint
- Sludge feed flow setpoint
- Centrifuge torque setpoint

Maximizing performance with the modular Valmet SDO

Story of Tampere Water, Finland, with Valmet SDO Savings estimation in the pre-project phase – conservative estimate

ROI calculator is online for customer input, google Valmet Wastewater

Volmet SDO pro	Superior solids measurement solutions for wastewater						
work	Sludge and polymer dewatering Sludge to dewatering 0698 m3/d Sludge to dewatering TS 2.8 To dewatering TS 19.54 to n/d	Dry Cake from the dewatering Dry cake 063 ton/d Dry cake TS 29.67 % Dry cake TS 18.69 ton/d	Further processing of the dewatered sludge Sludge transportation ▼ Further processing costs 55 €/ton	Savings when less material is circulated 40 % less from level 2424 mg/l to 1454 mg/l Polymer savings Dewatering operation savings	& 842 €/a 977 €/a		
 Savings estimation based on real customer data Project feasibility 	Polymer costs 2.85 €/kg Polymer usage 1.2 kg/ton			Other costs saving Summary Savings When less polymer is used in the dewatering 10 % less from level 1.2 kg/ton to 1.08 kg/ton with pr Polymer savings	3011 €/a 4830 €/a ice 2.85 €/kg 2640 €/a		
 agreed Project risk minimized 	Valmet TS Feed sludge ~2 TS% Re	Polymer Sludge centrifuge eject water 0.1 TSS%	e Cake solids ~ 25 TS% Valmet TS	Savings when higher TS in the dry cake 02.25 % dryer from level 29.67 % to 31.92 % Transport savings and further processing cavings fuel costs saving	99149 €/a) €/a		
	Reject Water Reject Water Flow Suspended solid mg/l current value Suspend solid material other circulation cost Read More	610.62 m3/d 02424 mg/l t 0.1 €/kg	Dewatering unit Operation costs Read More 10 €/h Feed capacity 90 m3/h e Metric Save Draft Metric	96619 €/a Total Sevings TOTAL Contraction ()			
					ROI		

Story of Tampere Water, Finland, with Valmet SDO

Measurements verification

Example of the operator display

DNAuse P101 Valmet Sludge Dewatering Opt	imization 1/QC	S				
/almet Sludge Dewatering Optimization 1		80.40		🔶 🄶	🛧 🔶 🕯	9 • 🧭 실 🔯 👰
Controlled variables			1			
Reject flow dry solids	800.0	800.0	A mg/l			Optimize On
Accept flow dry cake	23.0	23.0	A %			
Polymer dosing minimization	1.0	5.0	A kgP/tTS			
Manipulated variables						
Polymer specific flow control	5.0	5.0	A C kgP/tTS			
Torque control	48.0	48.0	AC%			
Sludge dry solids flow to centrifuge	200.0	199.9	kgTS/h			
Configuration			1	1000	/ 1000 Vh 3	2000 rpm
Polymer control mode (optimizer / remote calculation)			izer		1	48 %
Constant / measured sludge feed consistency			ant	10.0 / 10.0 m3/	h 🕹 . 📼	CRANKING CONTRACTOR
Constant consistency when measurement not in use			2.00 %	Г		TANANA UNANG MARKAN
Polymer ratio		5.00 kg/t				
Polymer dry content		2.50 9/1		- IT		
				2.00 %	800.0 %	200 kgTS/h 23.0 %
				1	1	+
Połym-min						1
Acc.Cons.			Torque			
Rej.cons.	II.		Porymer		-	
		10000				
	7					
12:00 13:00 14:00	15:00		12:00	13:00	14:00	15:00

Install and maintenance

- SDO software should be tied in to Valmet factory through a 4G network. This needs to be agreed with user. Enables remote diagnostics and performance checks as needed.
- Some possible challenges when feeding centrifuge with thickened primary sludge (TPS) which could contain bad levels FOG and other debris, really plugging up piping and sensors. Glass lining and purging the sensor has proven to help.
- Instruments need power and utilities, such as 24V (TS), 240V (LS/DS), plant air and hot water to activate actuators and solenoids.
- Calibration of TS is simple single point although final tuning needs at least 5 samples, while LS and DS need a few days of grab samples to build best correlation curve and enable measurement cell backflush cleaning cycle timing.
- TS and LS have minimum flow rate requirements and flow profile (LS). DS installed on throw side of chute.
- Check of measurements should be done likely weekly to lab.
- Valmet USA-based technicians/engineers provide full site support, training and commissioning.

Recent installations (clockwise LS-DS-TS)

Story of Tampere Water, Finland, with Valmet SDO (\$157K USD) savings per year

18.5 MGD capacity plant

Centrate water average solids % reduced by 50% and stabilized. Savings in circulated material were \$11K USD /year

Polymer consumption reduced by almost 40% from 13 lbs/ton. Savings in polymer usage were \$55K USD/year

Dry cake solids content has increased by ≈1.3% from 29.7% to over 31%. Transportation savings were \$91K USD/year

Typical Valmet SDO scope Investment/ROI

- Estimated Investment \$180,000 USD
- Estimated ROI 1 1.5 years
- Additional centrifuges need less investment as control application can handle to 4 units. Only measurements required to duplicate.

Valmet wastewater portfolio

- Proven and unique technology
 - Multivariable Controls
 - Unique measurement portfolio
- Verified references
 - 5 x Valmet SDO references since launch is 2017
 - Finland, South Africa
 - 2 new orders in USA and 1 in Canada 2019
 - 1000+ Valmet TS installations
 - 10's Valmet LS and Valmet DS installations
 - San Francisco, Denver, Ottawa, etc.
- Established aftersales support network
- Contact Valmet for ROI/site visit
- Cooperation with TAG members
 - Recent Tag London, UK

http://www.valmet.com/wastewater

Supporting Slides Follow

Progress built on 220 years of industrial history

Key figures in 2018

Orders received EUR 3,722 million

Net sales EUR 3,325 million

Comparable EBITA EUR 257 million

Comparable EBITA margin 7.7%

Employees (on Dec 31, 2018) 12,528

Paper

Strong, global presence is a good platform for growth

Over 100 service centers, 85 sales offices, 35 production units, 16 R&D centers

Analyzer and Measurement Solutions Portfolio

Valmet

© Valmet

Valmet offering for wastewater management

Advanced measurement technology and controls for municipal & industrial wastewater dry solids management

- Valmet Total Solids Transmitter (Valmet TS)
- Valmet Low Solids Measurement (Valmet LS)
- Valmet Dry Solids Measurements (Valmet DS)
- Valmet Nove, Nove H samplers
- Valmet SDO, Sludge Dewatering Optimizer
- Valmet DNA automation system

Valmet TS

Measurement principle

- Valmet TS measures the time of flight of a microwave signal in the sludge
- Microwave's delay time in water vs. total solids has a linear relationship

A glass lined Valmet TS to resist grease build-up

Above Teflon lined flow meter and a glass lined Valmet TS.

Teflon lined Flow Meter

Glass lined Valmet TS

Clean White Glass Lined Internals of Valmet TS

- Grease build-up on Teflon lined Flow Meter internals

Process know-how and performance increase

	Valmet TS before the centrifuge	Valmet LS at centrate	Valmet TS / DS after the centrifuge	Control application
Function	 Polymer dosage based on mass flow 	 Feedback of the polymer dosing level as well as torque level . Monitoring of the centrifuge performance 	 Feedback of the torque level as well as polymer dosing level. Monitoring of the centrifuge performance 	Optimizing the centrifuge performance
Benefits	 Fast saving in polymer costs Immediate more stable process More information of the process dynamics 	 Select Correct polymer type Optimize the Centrate TSS value Minimize recycling material inside the plant 	 Maximized total solids, higher thermal capacity for the incinerator, less transport costs 	 24/7 optimization with automatic control application Maximized benefits by modular structure Step by step expansion of the control application
Savings annually	• 20% polymer	 No wasted money to wrong polymer type Minimize chemical 30% and pumping costs inside the plant 50% 	 1% increase in dry cake means about 3-5 % volume decrease Customer example in 800 000 p.e plant 1% increase means €150 000 savings in further sludge handling Customer (400 000 ton sludge/d) calculated that 0.3 % increasing mean 60 kL/year of oil saving (about €36 000 in incineration) 	 Even 50% of polymer saving and 50 % recycling material decrease

The complete package is more than each component separately

Principle of the Multivariable Process

With a multivariable process it is difficult to use a one--to--one relationship to control each

process output (CV) by changing only one manipulated variable (MV).When one of the manipulated variables is changed in order to drive one of the controlled variables, other controlled variables are also affected at the same time (see Figure 7). The correct way to control the multivariable process is to use a multivariable feedback controller for regulating all manipulated variables (MV) simultaneously in order to drive the coupled process outputs to follow the multiple targets (setpoints).

Figure 7

Principle of the Multivarible process

MPC Control principle

Figure 9 Control principle of the MPC for one controlled variable

The MPC control principle is based on the following strategy

- At each control execution moment, the controller performs a forecast of the process output, i.e., it predicts the future behaviour of the controlled variables. Predictions are made over a certain time horizon *hmax and are based on process models and* known control actions (history).
- 2 The controller calculates the optimal subsequent *hcon control actions, which keeps* the number of errors occurring between setpoints and predicted process outputs as small as possible during the time period *hmin--hmax. The calculation is based on an* optimization of the cost function, which presents how the smallest possible error occurrence is achieved with minimal control actions.
- 3 First, one of the proposed control actions is applied to the process. All other actions are ignored and the whole procedure is repeated, leading to updated control actions with corrections based on the latest measurements.

Customer example

Tampere Water, Finland

Customer example

Tampere Water, Finland

Advantages 1/2

- Sludge pumping from clarifier tanks is based on time and thickness. Pumping is more efficient and saves energy
 - energy savings are abt. 37
 %, 5000 €
- Thickness has increased 1,5 %→ 3,5 % by using TSmeasurement.
 - 32 % less sludge to treatment
- Solid content of centrate water is now 50 % lower from 2500 mg/l before starting the project

Customer example

Tampere Water, Finland

Advantages 2/2

- Dried cake content has increased about 1-2 % from 29,7
 %
 - → Savings in transportation costs due to smaller density of the dry cake
- Polymer consumption has decreased almost 40 % from level 8 kg/ton
- Savings:
 - when less material is circulated, 10 000 €/a
 - when less polymer is used in the dewatering, 49 000 €/a
 - when higher TS in the dry cake (transportation costs), 80 000 €/a

